资源类型

期刊论文 141

会议视频 2

年份

2023 23

2022 11

2021 14

2020 8

2019 8

2018 9

2017 7

2016 6

2015 7

2014 9

2013 6

2012 2

2011 15

2010 1

2009 5

2008 4

2007 2

2006 1

2005 2

2002 1

展开 ︾

关键词

生物质 13

燃煤发电 3

超超临界 3

中国 2

农林生物质 2

燃烧特性 2

生物油 2

生物质能 2

Bio-SNG 1

PM2.5脱除 1

V-W-Mo-Cu催化剂 1

“1123”生态环保排放限值 1

三碳经济 1

中试平台 1

乙醇 1

二氧化碳减排 1

产业化 1

产业化发展 1

产业链 1

展开 ︾

检索范围:

排序: 展示方式:

Performance evaluation of an improved biomass-fired cogeneration system simultaneously using extraction

《能源前沿(英文)》 2022年 第16卷 第2期   页码 321-335 doi: 10.1007/s11708-021-0741-4

摘要: An advanced cogeneration system based on biomass direct combustion was developed and its feasibility was demonstrated. In place of the traditional single heat source (extraction steam), the extraction steam from the turbine, the cooling water from the plant condenser, and the low-pressure feedwater from the feedwater preheating system were collectively used for producing district heat in the new scheme. Hence, a remarkable energy-saving effect could be achieved, improving the overall efficiency of the cogeneration system. The thermodynamic and economic performance of the novel system was examined when taking a 35 MW biomass-fired cogeneration unit for case study. Once the biomass feed rate and net thermal production remain constant, an increment of 1.36 MW can be expected in the net electric production, because of the recommended upgrading. Consequently, the total system efficiency and effective electrical efficiency augmented by 1.23 and 1.50 percentage points. The inherent mechanism of performance enhancement was investigated from the energy and exergy aspects. The economic study indicates that the dynamic payback period of the retrofitting project is merely 1.20 years, with a net present value of 5796.0 k$. In conclusion, the proposed concept is validated to be advantageous and profitable.

关键词: biomass-fired cogeneration     district heat production system     absorption heat pump     extraction steam     cooling water     low-pressure feedwater    

Compositional and structural study of ash deposits spatially distributed in superheaters of a large biomass-fired

Yishu XU, Xiaowei LIU, Jiuxin QI, Tianpeng ZHANG, Minghou XU, Fangfang FEI, Dingqing LI

《能源前沿(英文)》 2021年 第15卷 第2期   页码 449-459 doi: 10.1007/s11708-021-0734-3

摘要: Recognizing the nature and formation progress of the ash deposits is essential to resolve the deposition problem hindering the wide application of large-scale biomass-fired boilers. Therefore, the ash deposits in the superheaters of a 220 t/h biomass-fired CFB boiler were studied, including the platen (PS), the high-temperature (HTS), the upper and the lower low-temperature superheaters (LTS). The results showed that the deposits in the PSs and HTSs were thin (several millimeters) and compact, consisting of a yellow outer layer and snow-white inner layer near the tube surface. The deposits in the upper LTS appeared to be toughly sintered ceramic, while those in the lower LTS were composed of dispersive coarse ash particles with an unsintered surface. Detailed characterization of the cross-section and the initial layers in the deposits revealed that the dominating compositions in both the PSs and the HTSs were Cl and K (approximately 70%) in the form of KCl. Interestingly, the cross-section of the deposition in the upper LTS exhibited a unique lamellar structure with a major composition of Ca and S. The contents of Ca and Si increased from approximately 10% to approximately 60% in the deposits from the high temperature surfaces to the low temperature ones. It was concluded that the vaporized mineral matter such as KCl played the most important role in the deposition progress in the PS and the HTS. In addition, although the condensation of KCl in the LTSs also happened, the deposition of ash particles played a more important role.

关键词: ash deposition     biomass combustion     circulating fluidized bed     initial layer     structure analysis    

A coal-fired power plant integrated with biomass co-firing and CO capture for zero carbon emission

《能源前沿(英文)》 2022年 第16卷 第2期   页码 307-320 doi: 10.1007/s11708-021-0790-8

摘要: A promising scheme for coal-fired power plants in which biomass co-firing and carbon dioxide capture technologies are adopted and the low-temperature waste heat from the CO2 capture process is recycled to heat the condensed water to achieve zero carbon emission is proposed in this paper. Based on a 660 MW supercritical coal-fired power plant, the thermal performance, emission performance, and economic performance of the proposed scheme are evaluated. In addition, a sensitivity analysis is conducted to show the effects of several key parameters on the performance of the proposed system. The results show that when the biomass mass mixing ratio is 15.40% and the CO2 capture rate is 90%, the CO2 emission of the coal-fired power plant can reach zero, indicating that the technical route proposed in this paper can indeed achieve zero carbon emission in coal-fired power plants. The net thermal efficiency decreases by 10.31%, due to the huge energy consumption of the CO2 capture unit. Besides, the cost of electricity (COE) and the cost of CO2 avoided (COA) of the proposed system are 80.37 $/MWh and 41.63 $/tCO2, respectively. The sensitivity analysis demonstrates that with the energy consumption of the reboiler decreasing from 3.22 GJ/tCO2 to 2.40 GJ/ tCO2, the efficiency penalty is reduced to 8.67%. This paper may provide reference for promoting the early realization of carbon neutrality in the power generation industry.

关键词: coal-fired power plant     biomass co-firing     CO2 capture     zero carbon emission     performance evaluation    

中国农林生物质直燃发电产业化发展分析

张雁茹,庄会永

《中国工程科学》 2011年 第13卷 第2期   页码 57-62

摘要:

介绍了中国农林生物质直燃发电产业化发展的背景和现状,通过典型案例研究来说明该产业技术发展取得的成绩和不足,并对其未来的发展做了简要分析。

关键词: 农林生物质     直燃发电     产业化发展    

Exergy analysis and simulation of a 30MW cogeneration cycle

Nikhil Dev, Samsher, S. S. Kachhwaha, Rajesh Attri

《机械工程前沿(英文)》 2013年 第8卷 第2期   页码 169-180 doi: 10.1007/s11465-013-0263-9

摘要:

Cogeneration cycle is an efficient mean to recover the waste heat from the flue gases coming out of gas turbine. With the help of computer simulation, design parameters may be selected for the best performance of cogeneration cycle. In the present work a program is executed in software EES on the basis of mathematical modelling described in paper to study cogeneration cycle performance for different parameters. Results obtained are compared with the results available in literature and are found in good agreement with them. Real gas and water properties are inbuilt in the software. Results show that enthalpy of air entering the combustion chamber is higher than that of the flue gases at combustion chamber outlet. For different operative conditions, energy and exergy efficiencies follow similar trends; although, exergy efficiency values are always lower than the corresponding energy efficiency ones. From the results it is found that turbine outlet temperature (TIT) of 524°C is uniquely suited to efficient cogeneration cycle because it enables the transfer of heat from exhaust gas to the steam cycle to take place over a minimal temperature difference. This temperature range results in the maximum thermodynamic availability while operating with highest temperature and highest efficiency cogeneration cycle. Effect of cycle pressure ratio (CR), inlet air temperature (IAT) and water pressure at heat recovery steam generator (HRSG) inlet on the 30 MW cogeneration cycle is also studied.

关键词: Cogeneration cycle     air compressor     HRSG     gas turbine     regenerator     CR     IAT    

Performance analysis of cogeneration systems based on micro gas turbine (MGT), organic Rankine cycle

Zemin BO, Kai ZHANG, Peijie SUN, Xiaojing LV, Yiwu WENG

《能源前沿(英文)》 2019年 第13卷 第1期   页码 54-63 doi: 10.1007/s11708-018-0606-7

摘要: In this paper, the operation performance of three novel kinds of cogeneration systems under design and off-design condition was investigated. The systems are MGT (micro gas turbine) + ORC (organic Rankine cycle) for electricity demand, MGT+ ERC (ejector refrigeration cycle) for electricity and cooling demand, and MGT+ ORC+ ERC for electricity and cooling demand. The effect of 5 different working fluids on cogeneration systems was studied. The results show that under the design condition, when using R600 in the bottoming cycle, the MGT+ ORC system has the lowest total output of 117.1 kW with a thermal efficiency of 0.334, and the MGT+ ERC system has the largest total output of 142.6 kW with a thermal efficiency of 0.408. For the MGT+ ORC+ ERC system, the total output is between the other two systems, which is 129.3 kW with a thermal efficiency of 0.370. For the effect of different working fluids, R123 is the most suitable working fluid for MGT+ ORC with the maximum electricity output power and R600 is the most suitable working fluid for MGT+ ERC with the maximum cooling capacity, while both R600 and R123 can make MGT+ ORC+ ERC achieve a good comprehensive performance of refrigeration and electricity. The thermal efficiency of three cogeneration systems can be effectively improved under off-design condition because the bottoming cycle can compensate for the power decrease of MGT. The results obtained in this paper can provide a reference for the design and operation of the cogeneration system for distributed energy systems (DES).

关键词: cogeneration system     different working fluids     micro gas turbine (MGT)     organic Rankine cycle (ORC)     ejector refrigeration cycle (ERC)    

An overview of the development history and technical progress of China’s coal-fired power industry

Weiliang WANG, Zheng LI, Junfu LYU, Hai ZHANG, Guangxi YUE, Weidou NI

《能源前沿(英文)》 2019年 第13卷 第3期   页码 417-426 doi: 10.1007/s11708-019-0614-2

摘要: As the main power source of China, coal-fired power industry has achieved a great progress in installed capacity, manufacturing technologies, thermal efficiency, as well as pollutant control during the past century. With the fast development of renewable energies, coal-fired power industry is experiencing a strategic transformation. To specify the development of coal-fired power industry, its development history is reviewed and the technical progresses on aspects of thermal efficiency, pollutants control and peaking shaving capacity are discussed. It is concluded that the role of China’s coal-fired power source would be transformed from the dominant position to a base position in power source structure. Considering the sustainable development of coal-fired power industry in energy conservation, emission control, and utilization of renewable energies, it is suggested that the national average thermal efficiency should be improved by continual up-gradation of units by using advanced technologies and eliminating outdated capacity. Moreover, the emission standard of air pollutants should not be stricter any more in coal-fired power industry. Furthermore, the huge amount of combined heat and power (CHP) coal-fired units should be operated in a decoupled way, so as to release more than 350 GW regulation capacity for the grid to accept more renewable energy power.

关键词: coal-fired power     development strategy     eliminating outdated capacity     peak shaving     emission reduction     renewable energy    

Dynamic modelling and simulation of a post-combustion CO capture process for coal-fired power plants

《化学科学与工程前沿(英文)》 2022年 第16卷 第2期   页码 198-209 doi: 10.1007/s11705-021-2057-7

摘要: Solvent-based post-combustion capture technologies have great potential for CO2 mitigation in traditional coal-fired power plants. Modelling and simulation provide a low-cost opportunity to evaluate performances and guide flexible operation. Composed by a series of partial differential equations, first-principle post-combustion capture models are computationally expensive, which limits their use in real time process simulation and control. In this study, we propose a first-principle approach to develop the basic structure of a reduced-order model and then the dominant factor is used to fit properties and simplify the chemical and physical process, based on which a universal and hybrid post-combustion capture model is established. Model output at steady state and trend at dynamic state are validated using experimental data obtained from the literature. Then, impacts of liquid-to-gas ratio, reboiler power, desorber pressure, tower height and their combination on the absorption and desorption effects are analyzed. Results indicate that tower height should be designed in conjunction with the flue gas flow, and the gas-liquid ratio can be optimized to reduce the reboiler power under a certain capture target.

关键词: CO2 capture     post-combustion capture     simulation     dominant factor    

Analysis of Flue Gas Pollutants Deep-removal Technology in Coal-fired Power Plants

Xiao-lu Zhang

《工程管理前沿(英文)》 2014年 第1卷 第4期   页码 336-340 doi: 10.15302/J-FEM-2014061

摘要: In recent years, frequent haze has made PM become a public hotspot. PM control has been added to the 2012 release “ambient air quality standard.” Currently flue gas pollutant control technology does not easily remove PM . Developing Flue Gas Pollutant Deep-removal Technology (DRT) for coal-fired power plants for deep-removing pollutants such as PM , SO , SO , and heavy metals, is an urgent problem. Based on the analysis of the necessity and existing problems of developing DRT suitable for China, this study focused on PM removal technology, low NO emission of ultra supercritical boiler under all load conditions, and the adaptability of SCR working temperature. Finally, the flue gas pollutant removal system at a 2×660MW supercritical power plant was introduced, and the roadmap for developing DRT for 1,000MW ultra supercritical units was analyzed.

关键词: Coal-fired power plant     flue gas pollutants     deep-removal     PM2.5 removal    

The R&D of Flue Gas Pollutants Deep-Removal Technology for Coal-fired Power Plants

Xiao-lu Zhang

《工程管理前沿(英文)》 2015年 第2卷 第4期   页码 359-363 doi: 10.15302/J-FEM-2015057

摘要: The flue gas pollutants deep-removal technology (DRT) focusing on PM removal is the prime method of further reducing pollutants emission from coal-fired power plants. In view of the four key technological challenges in developing the DRT, studies were conducted on a series of purification technologies and the DRT was developed and successfully applied in 660 MW and 1000 MW coal-fired units. This paper analyzes the application results of the demonstration project, and proposes a roadmap for the follow-up researches and optimizations.

关键词: coal-fired power plant     pollutants emission reduction     PM2.5     flue gas pollutants     deep-removal    

Experimental investigation and feasibility analysis of a thermophotovoltaic cogeneration system in high-temperature

Jianxiang WANG, Hong YE, Xi WU, Hujun WANG, Xiaojie XU

《能源前沿(英文)》 2013年 第7卷 第2期   页码 146-154 doi: 10.1007/s11708-013-0253-y

摘要: The experimental - characteristics of a Si cell module in a thermophotovoltaic (TPV) system were investigated using SiC or Yb O radiator. The results demonstrate that the short-circuit current increases while the open-circuit voltage, along with the fill factor, decreases with the cell temperature when the radiator temperature increases from 1273 to 1573 K, leading to a suppressed increase of the output power of the system. The maximum output power density of the cell module is 0.05 W/cm when the temperature of the SiC radiator is 1573 K, while the electrical efficiency of the system is only 0.22%. The efficiency is 1.3% with a Yb O radiator at the same temperature, however, the maximum output power density drops to 0.03 W/cm . The values of the open-circuit voltage and the maximum output power obtained from the theoretical model conform to the experimental ones. But the theoretical short-circuit current is higher because of the existence of the contact resistance inside the cell module. In addition, the performance and cost of TPV cogeneration systems with the SiC or Yb O radiator using industrial high-temperature waste heat were analyzed. The system electrical efficiency could reach 3.1% with a Yb O radiator at 1573 K. The system cost and investment recovery period are 6732 EUR/kWel and 14 years, respectively.

关键词: thermophotovoltaic (TPV)     industrial waste heat     ytterbium oxide     system efficiency    

Energy conservation in China’s coal-fired power industry by installing advanced units and organized phasing

Weiliang WANG, Junfu LYU, Zheng LI, Hai ZHANG, Guangxi YUE, Weidou NI

《能源前沿(英文)》 2019年 第13卷 第4期   页码 798-807 doi: 10.1007/s11708-019-0633-z

摘要: Coal-fired power is the main power source and the biggest contributor to energy conservation in the past several decades in China. It is generally believed that advanced technology should be counted on for energy conservation. However, a review of the decline in the national average net coal consumption rate (NCCR) of China’s coal-fired power industry along with its development over the past few decades indicates that the up-gradation of the national unit capacity structure (including installing advanced production and phasing out backward production) plays a more important role. A quantitative study on the effect of the unit capacity structure up-gradation on the decline in the national average NCCR suggests that phasing out backward production is the leading factor for the decline in the NCCR in the past decade, followed by the new installation, whose sum contributes to approximately 80% of the decline in the national average NCCR. The new installation has an effective affecting period of about 8 years, during which it would gradually decline from a relatively high value. Since the effect of phasing out backward production may remain at a certain degree given a continual action of phasing out backward capacity, it is suggested that the organized action of phasing out backward production should be insisted on.

关键词: coal-fired power     energy conservation     net coal consumption rate     new installation     phasing out backward production     unit capacity structure    

Will biomass be used for bioenergy or transportation biofuels?What drivers will influence biomass allocation

Jinguang HU, William James CADHAM, Susan van DYK, Jack N. SADDLER

《农业科学与工程前沿(英文)》 2017年 第4卷 第4期   页码 473-481 doi: 10.15302/J-FASE-2017168

摘要: Potential competition for biomass for current and future bioenergy/biofuel uses in Brazil, Denmark, Sweden and the USA were compared. In each of these countries, bioenergy and biofuels are already important in their energy mix. However, there is limited competition for biomass between bioenergy (heat/power/residential/industrial) and transportation biofuel applications. This situation is likely to continue until advanced biofuel technology becomes much more commercially established. In each of these countries, biomass is predominantly used to produce bioenergy, even in those regions where biofuels are significant component of their transportation sector (Brazil, Sweden and USA). The vast majority of biofuel production continues to be based on sugar, starch and oil rich feedstocks, while bioenergyis produced almost exclusively from forest biomass with agricultural biomass having a small, but increasing, secondary role. Current and proposed commercial scale biomass-to-ethanol facilities almost exclusively use agriculture derived residues (corn stover/wheat straw/sugarcane bagasse). Competition for biomass feedstocks for bioenergy/biofuel applications, is most likely to occur for agricultural biomass with coproduct lignin and other residues used to concomitantly produce heat and electricity on site at biofuel production facilities.

关键词: bioenergy     biofuel     biomass     renewable energy policy    

Design guidelines for urea hydrolysers for ammonia demand of the SCR DENOX project in coal-fired power

Peng ZHENG, Xuan YAO, Wei ZHENG

《能源前沿(英文)》 2013年 第7卷 第1期   页码 127-132 doi: 10.1007/s11708-012-0225-7

摘要: Ammonia is highly volatile and will present substantial environmental and operation hazards when leaking into the air. However, ammonia is the most common reactant in the DENOX project to eliminate NO in the flue gas. The storage and transportation of liquid ammonia has always been a dilemma of the power plant. Urea is a perfect substitute source for ammonia in the plant. Urea hydrolysis technology can easily convert urea into ammonia with low expense. Presently, there is still no self-depended mature urea hydrolysis technology for the DENOX project in China; therefore, this paper proposes several guidelines to design the urea hydrolyser by theoretical analysis. Based on theoretical analysis, a simulation model is built to simulate the chemical reaction in the urea hydrolyser and is validated by the operational data of the commercial hydrolyser revealed in the literature. This paper endeavors to propose suggestions and guidelines to develop domestically urea hydrolysers in China.

关键词: urea     hydrolyser     ammonia     selective catalytic reduction (SCR)    

PM10 emissions from industrial coal-fired chain-grate boilers

Xinghua Li, Junzan Han, Lei Duan

《环境科学与工程前沿(英文)》 2017年 第11卷 第6期 doi: 10.1007/s11783-017-0966-y

摘要: Industrial coal-fired boiler is an important air pollutant emission source in China. The chain-grate boiler is the most extensively used type of industrial coal-fired boiler. An electrical low-pressure impactor, and a Dekati Low Pressure Impactor were applied to determine mass and number size distributions of PM at the inlet and the outlet of the particulate emission control devices at six coal-fired chain-grate boilers. The mass size distribution of PM generated from coal-fired chain-grate boilers generally displays a bimodal distribution that contains a submicron mode and a coarse mode. The PM in the submicron mode for burning with raw coal contributes to 33%±10 % of PM emissions, much higher than those for pulverized boilers. And the PM in the submicron mode for burning with briquette contributes up to 86 % of PM emissions. Multiclones and scrubbers are not efficient for controlling PM emission. Their average collection efficiencies for sub-micron particle and super-micron particle are 34% and 78%, respectively. Operating conditions of industrial steam boilers have influence on PM generation. Peak of the submicron mode during normal operation period is larger than the start-up period.

关键词: coal-fired chain-grate boiler     PM10     size distribution     particulate emission control devices     size-dependent collection efficiency    

标题 作者 时间 类型 操作

Performance evaluation of an improved biomass-fired cogeneration system simultaneously using extraction

期刊论文

Compositional and structural study of ash deposits spatially distributed in superheaters of a large biomass-fired

Yishu XU, Xiaowei LIU, Jiuxin QI, Tianpeng ZHANG, Minghou XU, Fangfang FEI, Dingqing LI

期刊论文

A coal-fired power plant integrated with biomass co-firing and CO capture for zero carbon emission

期刊论文

中国农林生物质直燃发电产业化发展分析

张雁茹,庄会永

期刊论文

Exergy analysis and simulation of a 30MW cogeneration cycle

Nikhil Dev, Samsher, S. S. Kachhwaha, Rajesh Attri

期刊论文

Performance analysis of cogeneration systems based on micro gas turbine (MGT), organic Rankine cycle

Zemin BO, Kai ZHANG, Peijie SUN, Xiaojing LV, Yiwu WENG

期刊论文

An overview of the development history and technical progress of China’s coal-fired power industry

Weiliang WANG, Zheng LI, Junfu LYU, Hai ZHANG, Guangxi YUE, Weidou NI

期刊论文

Dynamic modelling and simulation of a post-combustion CO capture process for coal-fired power plants

期刊论文

Analysis of Flue Gas Pollutants Deep-removal Technology in Coal-fired Power Plants

Xiao-lu Zhang

期刊论文

The R&D of Flue Gas Pollutants Deep-Removal Technology for Coal-fired Power Plants

Xiao-lu Zhang

期刊论文

Experimental investigation and feasibility analysis of a thermophotovoltaic cogeneration system in high-temperature

Jianxiang WANG, Hong YE, Xi WU, Hujun WANG, Xiaojie XU

期刊论文

Energy conservation in China’s coal-fired power industry by installing advanced units and organized phasing

Weiliang WANG, Junfu LYU, Zheng LI, Hai ZHANG, Guangxi YUE, Weidou NI

期刊论文

Will biomass be used for bioenergy or transportation biofuels?What drivers will influence biomass allocation

Jinguang HU, William James CADHAM, Susan van DYK, Jack N. SADDLER

期刊论文

Design guidelines for urea hydrolysers for ammonia demand of the SCR DENOX project in coal-fired power

Peng ZHENG, Xuan YAO, Wei ZHENG

期刊论文

PM10 emissions from industrial coal-fired chain-grate boilers

Xinghua Li, Junzan Han, Lei Duan

期刊论文